How Competitive Is Hydrogen Today, and What Investments Are Needed to Make It a Mainstream Energy Source?

FSU **UNDERGRADUATE RESEARCH OPPORTUNITY PROGRAM**

CENTER FOR UNDERGRADUATE RESEARCH & ACADEMIC ENGAGEMENT

Introduction

- Hydrogen has been researched for decades as a clean energy source. Still, significant investments worldwide are being made in hydrogen to address climate change, achieve Net-Zero emissions targets, and move toward sustainable energy systems.
- Green hydrogen is hydrogen produced through the electrolysis of water, using electricity from renewable resources like wind and solar energy.
- High production, storage, and transportation costs are limiting the widespread adoption of hydrogen. Current research often overlooks economic feasibility by focusing solely on its environmental benefits.
- My research examines the financial viability of hydrogen by comparing its costs to traditional energy sources and identifying key barriers to adoption.
- Understanding the financial challenges will help shape policies and investments in technology advancements necessary for hydrogen to play a significant role in global sustainability energy systems.

Methods/Materials

- My research analyzed and summarized a range of sources, including published literature and government reports, with a focus on the U.S. Department of Energy's Hydrogen Shot plan, which represents a major investment in U.S. hydrogen technology.
- A key source was the meta-analysis by Sharma et al. (2023), which was chosen because of its extensive reach. It analyzed 610 peer-reviewed journal articles from the past 50 years to provide insight into the hydrogen economy.
- The study focused on production, storage, and transportation costs, necessary infrastructure investments, and the economic competitiveness of hydrogen compared with other energy sources.
- By examining trends from various published sources, the analysis highlights key economic challenges and policy gaps that must be addressed for hydrogen fuel to achieve widespread adoption.

Trevor Tice and Dr. Sastry Pamidi

Florida State University, Center for Advanced Power Systems

•	
Find	Ings

- If the cost of green hydrogen can be drastically reduced, it could serve as a sustainable fuel source due to its zero emissions.
- The U.S. government aims to lower the cost of clean hydrogen to \$1.00 per kilogram by 2031 through the Hydrogen Shot initiative and has devoted billions of dollars to achieve this goal.
- The Department of Energy estimates that hydrogen currently costs around \$5.00/kg. Reducing this to the target of \$1.00/kg would make hydrogen more competitive with other energy sources and increase its market viability. • The technology for generating green hydrogen, such as electrolyzers, is expensive; reducing these costs could
- enhance hydrogen's competitiveness in transportation and industry sectors. • Producing hydrogen requires more electricity than it can generate, making it less efficient for continuous power
- generation.
- Currently, electricity used to make hydrogen costs more than the electricity hydrogen can generate, making it an inefficient choice for constant power generation.
- Transporting hydrogen using trucks powered by fossil fuels raises its cost per kilogram and reduces its overall sustainability.
- Due to these factors, hydrogen is not yet a practical substitute for widespread energy use but may be viable in sectors where direct electrification is not feasible, such as aviation and large-scale transportation.

Fuel Type	Estimated price per respective unit	Estimated converted price/kg
Green Hydrogen	\$5.00/kg	\$5.00/kg
Natural Gas	\$3.73/MMBtu	\$0.20-0.50/kg
Crude Oil	\$70.56/barrel	\$1.25/kg
Kerosene	\$3.78/gal	\$0.60/kg
Gasoline	\$3.25/gal	\$1.16/kg

Iuluie

FAMU-FSU College of Engineering

A simplified view of the storage requirements found within the hydrogen supply chain (Burke, et al., 6).

drawbacks.

- infrastructure.
- 2031
- demands.
- supply disruptions.

- developed countries.
- key challenge.

FISU FLORIDA STATE

Discussion

• My research analyzed various aspects of hydrogen, including production, storage, and transportation costs, to provide an overview of its benefits and

• Hydrogen has significant sustainability potential, but achieving economic viability requires major investment in the energy sector's overall

• Current hydrogen costs remain too high to compete with conventional energy sources, but the U.S. is on track to reach the targeted \$1.00/kg by

• High-pressure storage appears most effective for short-term use, while liquefaction is better suited for long-term storage despite its high energy

• A broad hydrogen distribution network enhances a country's energy security by reducing dependence on fossil fuels, mitigating risks associated with

• Strengthening the global hydrogen network requires international collaboration to accelerate development and deployment.

• Future research should examine global energy demand trends to determine whether cost-competitive hydrogen systems could handle rising energy needs or if additional infrastructure investments would be required.

Future Policies

• Currently, electricity transmission in the U.S. is at capacity, meaning hydrogen must be transported using new and innovative methods. • One proposal is retrofitting the existing natural gas pipeline network for hydrogen transport. While costly, this investment could establish a longterm sustainable energy infrastructure for future generations.

• Hydrogen-powered vehicles have been in development for years, but widespread adoption requires investment in fueling infrastructure and incentives for consumers and manufacturers.

• Strengthening regulatory frameworks and increasing government-

sponsored hydrogen projects are essential. This includes eliminating fossil fuel subsidies and pricing externalities.

• According to Sharma et al. (2023), transitioning to clean energy will require up to \$1.6 trillion in investments from both public and private sectors in

• Identifying the most efficient and cost-effective method of producing hydrogen from renewable energy while minimizing energy loss remains a

